72,172 research outputs found

    Experiments in apply morphological analysis in speech recognition and their cognitive explanation

    Get PDF
    May 200

    The role of nonthermal electrons in the optical continuum of stellar flares

    Get PDF
    We explore the possibility that the continuum emission in stellar flares is powered by nonthermal electrons accelerated during the flares. We compute the continuum spectra from an atmospheric model for a dMe star, AD Leo, at its quiescent state, when considering the nonthermal excitation and ionisation effects by precipitating electron beams. The results show that if the electron beam has an energy flux large enough, the U band brightening and, in particular, the U-B colour are roughly comparable with observed values for a typical large flare. Moreover, for electron beams with a moderate energy flux, a decrease of the emission at the Paschen continuum appears. This can explain at least partly the continuum dimming observed in some stellar flares. Adopting an atmospheric model for the flaring state can further raise the continuum flux but it yields a spectral colour incomparable with observations. This implies that the nonthermal effects may play the chief role in powering the continuum emission in some stellar flares.Comment: 6 pages, 4 figures, LaTeX (psfigs.sty), to appear in MNRA

    Is the Pedestrian going to Cross? Answering by 2D Pose Estimation

    Get PDF
    Our recent work suggests that, thanks to nowadays powerful CNNs, image-based 2D pose estimation is a promising cue for determining pedestrian intentions such as crossing the road in the path of the ego-vehicle, stopping before entering the road, and starting to walk or bending towards the road. This statement is based on the results obtained on non-naturalistic sequences (Daimler dataset), i.e. in sequences choreographed specifically for performing the study. Fortunately, a new publicly available dataset (JAAD) has appeared recently to allow developing methods for detecting pedestrian intentions in naturalistic driving conditions; more specifically, for addressing the relevant question is the pedestrian going to cross? Accordingly, in this paper we use JAAD to assess the usefulness of 2D pose estimation for answering such a question. We combine CNN-based pedestrian detection, tracking and pose estimation to predict the crossing action from monocular images. Overall, the proposed pipeline provides new state-of-the-art results.Comment: This is a paper presented in IEEE Intelligent Vehicles Symposium (IEEE IV 2018

    Dust Evolution and the Formation of Planetesimals

    Full text link
    The solid content of circumstellar disks is inherited from the interstellar medium: dust particles of at most a micrometer in size. Protoplanetary disks are the environment where these dust grains need to grow at least 13 orders of magnitude in size. Our understanding of this growth process is far from complete, with different physics seemingly posing obstacles to this growth at various stages. Yet, the ubiquity of planets in our galaxy suggests that planet formation is a robust mechanism. This chapter focuses on the earliest stages of planet formation, the growth of small dust grains towards the gravitationally bound "planetesimals", the building blocks of planets. We will introduce some of the key physics involved in the growth processes and discuss how they are expected to shape the global behavior of the solid content of disks. We will consider possible pathways towards the formation of larger bodies and conclude by reviewing some of the recent observational advances in the field.Comment: 43 pages, 6 figures. Chapter in International Space Science Institute (ISSI) Book on "The Disk in Relation to the Formation of Planets and their Proto-atmospheres", published in Space Science Reviews by Springe

    Collimated directional emission from a peanut-shaped microresonator

    Full text link
    Collimated directional emission is essentially required an asymmetric resonant cavity. In this paper, we theoretically investigate a type of peanut-shaped microcavity which can support highly directional emission with the emission divergence as small as 2.5o. The mechanism of the collimated emission is explained with the short-term ray trajectory and the intuitive lens model in detail. Wave simulation also confirms these results. This extremely narrow divergence of the emission holds a great potential in highly collimated lasing from on-chip microcavities

    The Flatness of Mass-to-Light Ratio on Large Scales

    Get PDF
    It has been suggested that the mass-to-light (M/LM/L) ratio of gravitationally clustering objects is scale-independent on scales beyond galaxy clusters, and may also be independent of the mass of the objects. In this paper, we show that the scale behavior of M/LM/L ratio is closely related to the scaling of cosmic structures larger than clusters. The scale dependence of the M/LM/L ratio can be determined by comparing the observed scaling of richness function (RF) of multi-scale identified objects with the model-predicted scaling of mass function (MF) of large scale structures. Using the multi-scale identified clusters from IRAS 1.2 Jy galaxy survey, we have made comparisons of the observed RF scaling of IRAS rclr_{cl}-clusters with the MF scalings given by simulations of three popular models SCDM, LCDM and OCDM. We find that, the M/L ratio basically is scale-independent from the Abell radius up to about 24 h1h^{-1}Mpc, while it seems to show a slight, but systematical, increase over this scale range. This result is weakly dependent on the cosmological parameters.Comment: AAS Latex file, 8 pages+ 4 figures, accepted for publication in ApJ
    corecore